Natural selection of the major histocompatibility complex (Mhc) in Hawaiian honeycreepers (Drepanidinae).
نویسندگان
چکیده
The native Hawaiian honeycreepers represent a classic example of adaptive radiation and speciation, but currently face one the highest extinction rates in the world. Although multiple factors have likely influenced the fate of Hawaiian birds, the relatively recent introduction of avian malaria is thought to be a major factor limiting honeycreeper distribution and abundance. We have initiated genetic analyses of class II beta chain Mhc genes in four species of honeycreepers using methods that eliminate the possibility of sequencing mosaic variants formed by cloning heteroduplexed polymerase chain reaction products. Phylogenetic analyses group the honeycreeper Mhc sequences into two distinct clusters. Variation within one cluster is high, with dN > dS and levels of diversity similar to other studies of Mhc (B system) genes in birds. The second cluster is nearly invariant and includes sequences from honeycreepers (Fringillidae), a sparrow (Emberizidae) and a blackbird (Emberizidae). This highly conserved cluster appears reminiscent of the independently segregating Rfp-Y system of genes defined in chickens. The notion that balancing selection operates at the Mhc in the honeycreepers is supported by transpecies polymorphism and strikingly high dN/dS ratios at codons putatively involved in peptide interaction. Mitochondrial DNA control region sequences were invariant in the i'iwi, but were highly variable in the 'amakihi. By contrast, levels of variability of class II beta chain Mhc sequence codons that are hypothesized to be directly involved in peptide interactions appear comparable between i'iwi and 'amakihi. In the i'iwi, natural selection may have maintained variation within the Mhc, even in the face of what appears to a genetic bottleneck.
منابع مشابه
Identification and characterization of major histocompatibility complex class IIB alleles from three species of European ranid frogs
Immune genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in the vertebrate genome. Due to their polymorphic nature, they are often used to assess the adaptive genetic variability of natural populations. This study describes the first molecular characterization of 13 partial MHC class IIB sequences from three European ranid frogs. The utility of previously...
متن کاملPathogenicity of avian malaria in experimentally-infected Hawaii Amakihi.
The introduction of avian malaria (Plasmodium relictum) and mosquitoes (Culex quinquefasciatus) to the Hawaiian Islands (USA) is believed to have played a major role in the decline and extinction of native Hawaiian honeycreepers (Drepanidinae). This introduced disease is thought to be one of the primary factors limiting recovery of honeycreepers at elevations below 1,200 m where native forest h...
متن کاملSimulation of Major Histocompatibility Complex (MHC) Structure and Peptide Loading into an MHC Binding Pocket with Teachers’Hands
Molecular understanding of three-dimensional (3D) peptide: MHC models require both basic knowledge of computational modeling and skilled visual perception, which are not possessed by all students. The present model aims to simulate MHC molecular structure with the hands and make a profound impression on the students.
متن کاملA Case of Probable MHC Class II Deficiency with Disseminated BCGitis
Major histocompatibility complex (MHC) class II deficiency is a primary immunodeficiency disease characterized by abnormality of MHC class II molecules surface expression on peripheral blood lymphocytes and monocytes. Clinical manifestations include extreme susceptibility to viral, bacterial, and fungal infections but the immunodeficiency is not as severe as SCID (severe combined immunodeficien...
متن کاملSexual selection and the evolutionary dynamics of the major histocompatibility complex.
The genes of the major histocompatibility complex (MHC) are a key component of the adaptive immune system and among the most variable loci in the vertebrate genome. Pathogen-mediated natural selection and MHC-based disassortative mating are both thought to structure MHC polymorphism, but their effects have proven difficult to discriminate in natural systems. Using the first model of MHC dynamic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology
دوره 13 8 شماره
صفحات -
تاریخ انتشار 2004